Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Aging Cell ; : e14121, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450924

RESUMEN

Although studies have demonstrated that genome instability is accumulated in patients with Alzheimer's disease (AD), the specific types of genome instability linked to AD pathogenesis remain poorly understood. Here, we report the first characterization of the age- and sex-related trajectories of telomere length (TL) and micronuclei in APP/PS1 mice model and wild-type (WT) controls (C57BL/6). TL was measured in brain (prefrontal cortex, cerebellum, pituitary gland, and hippocampus), colon and skin, and MN was measured in bone marrow in 6- to 14-month-old mice. Variation in TL was attributable to tissue type, age, genotype and, to a lesser extent, sex. Compared to WT, APP/PS1 had a significantly shorter baseline TL across all examined tissues. TL was inversely associated with age in both genotypes and TL shortening was accelerated in brain of APP/PS1. Age-related increase of micronuclei was observed in both genotypes but was accelerated in APP/PS1. We integrated TL and micronuclei data with data on cognition performance and brain amyloidosis. TL and micronuclei were linearly correlated with cognition performance or Aß40 and Aß42 levels in both genotypes but to a greater extent in APP/PS1. These associations in APP/PS1 mice were dominantly driven by females. Together, our findings provide foundational knowledge to infer the TL and micronuclei trajectories in APP/PS1 mice during disease progression, and strongly support that TL attrition and micronucleation are tightly associated with AD pathogenesis in a female-biased manner.

2.
Food Chem Toxicol ; 165: 113129, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35568294

RESUMEN

Epidemiological studies have demonstrated that metformin (a cornerstone of diabetes treatment) has anticancer activity, but the underlying mechanism remains elusive. We aimed to investigate whether metformin elicits anticancer activity via increasing genotoxic stress, a state of increased genome damage that becomes tumor-suppressing if it goes beyond an intolerable threshold. We found that metformin (1-16 mM) suppressed proliferation and colony formation in a panel of cancer cell lines (HeLa, A375, A549 and QGY). Metformin induced a dose-dependent increase of genotoxic stress (including micronucleus, nucleoplasmic bridge and nuclear bud) and the increase of genotoxic stress correlated well with metformin's anticancer potential. Metformin deregulated the expression of BUBR1 and MAD2, two core genes of spindle assembly checkpoint (SAC) that surveillances chromosome segregation. Metformin had weakened antiproliferative effect and a corresponding attenuated genotoxic effect in HeLa cells cultured in high glucose (16 mg/ml). Meanwhile, metformin significantly increased genotoxicity in non-cancer cells (NCM460 and HUVECs). Metformin became non-genotoxic to HUVECs in high-glucose (8 and 16 mg/ml) conditions and reduced the genotoxicity of high glucose. Overall, these results infer a new mechanism of high-dose metformin, whereby low-glucose dependent genotoxic stress derived from SAC dysfunction might mediate some of the anticancer effect of this drug.


Asunto(s)
Metformina , Daño del ADN , Glucosa , Células HeLa , Humanos , Metformina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...